ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Biodiversity and Biomedicine: Our Future

دانلود کتاب تنوع زیستی و پزشکی زیستی: آینده ما

Biodiversity and Biomedicine: Our Future

مشخصات کتاب

Biodiversity and Biomedicine: Our Future

ویرایش: 1 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 012819541X, 9780128195413 
ناشر: Academic Press 
سال نشر: 2020 
تعداد صفحات: 571 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 27 مگابایت 

قیمت کتاب (تومان) : 53,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Biodiversity and Biomedicine: Our Future به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تنوع زیستی و پزشکی زیستی: آینده ما نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تنوع زیستی و پزشکی زیستی: آینده ما



تنوع زیستی و پزشکی زیستی: آینده ما دیدگاه جدیدی در مورد گونه های جانوری، گیاهی و قارچی زمین به عنوان منابع حیاتی برای درمان های سلامت انسان ارائه می دهد. در حالی که بیش از 10 میلیون گونه مختلف روی کره زمین وجود دارد، تنها 2 میلیون گونه کشف و نامگذاری شده است. این کتاب راه‌های مدرن برای ترکیب گونه‌های زمین در شیوه‌های زیست پزشکی را شناسایی می‌کند و بر نیاز به حفاظت از تنوع زیستی تأکید می‌کند.

این کتاب که توسط کارشناسان برجسته تنوع زیستی و زیست پزشکی نوشته شده است، با بینش های جدیدی در مورد مزایای ترکیبات فعال بیولوژیکی موجود در قارچ ها و گیاهان، از جمله فصلی در مورد استفاده از میوه های وحشی به عنوان یک گزینه درمانی، آغاز می شود. این کتاب در ادامه به نقش حیوانات، مانند دوزیستان و خزندگان، و اینکه چگونه حضور تهدیدآمیز این گونه‌ها برای حفظ تنوع زیستی باید معکوس شود، می‌پردازد. همچنین ارگانیسم‌های دریایی، از جمله گیاهان، حیوانات، و میکروب‌ها را به‌عنوان ضروری در کمک به سلامت انسان مورد بحث قرار می‌دهد.

تنوع زیستی و زیست‌پزشکی: آینده ما منبعی حیاتی برای محققان و پزشکان است. متخصص در مطالعات تنوع زیستی و حفاظت. دانش‌آموزان طب طبیعی و حفاظت از زیست‌شناختی نیز این موضوع را برای یادگیری با غنی‌ترین جوامع زیستی جهان و تنوع مولکولی گونه‌های مختلف مفید خواهند یافت.


توضیحاتی درمورد کتاب به خارجی

Biodiversity and Biomedicine: Our Future provides a new outlook on Earth’s animal, plant, and fungi species as vital sources for human health treatments. While there are over 10 million various species on the planet, only 2 million have been discovered and named. This book identifies modern ways to incorporate Earth’s species into biomedical practices and emphasizes the need for biodiversity conservation.

Written by leading biodiversity and biomedical experts, the book begins with new insights on the benefits of biologically active compounds found in fungi and plants, including a chapter on the use of wild fruits as a treatment option. The book goes on to discuss the roles of animals, such as amphibians and reptiles, and how the threatened presence of these species must be reversed to conserve biodiversity. It also discusses marine organisms, including plants, animals, and microbes, as essential in contributing to human health.

Biodiversity and Biomedicine: Our Future is a vital source for researchers and practitioners specializing in biodiversity and conservation studies. Students in natural medicine and biological conservation will also find this useful to learn of the world’s most bio-rich communities and the molecular diversity of various species.



فهرست مطالب

Cover
Biodiversity and Biomedicine
Copyright
Contents
List of Contributors
Foreword
Preface
Acknowledgment
1 Plant microbiome: source for biologically active compounds
	1.1 Introduction
	1.2 Diversity of endophytic bacteria
	1.3 Biological activity of endophytic microbes
	1.4 Conclusions
	References
2 Chemodiversity in natural plant populations as a base for biodiversity conservation
	2.1 Biodiversity
	2.2 Biodiversity indicators
	2.3 Biodiversity and biogeography
	2.4 Importance of populations for biodiversity
	2.5 Biodiversity and chemodiversity
	2.6 Plant chemodiversity
	2.7 Chemodiversity—analytical approaches
	2.8 Bioprospecting
	2.9 Plant biodiversity and biomedicine
	2.10 Targeted plant studies in the discovery of potential new drug candidates
	2.11 Balkan Peninsula—geographic and biological diversity
	2.12 Research on plant population chemodiversity in the Balkans
	2.13 Biomedical importance of population chemodiversity research
	2.14 Chemodiversity as a base for biodiversity conservation
	References
3 Harnessing the potential of plant biodiversity in health and medicine: opportunities and challenges
	3.1 Introduction
	3.2 Medicinal plants—a historical perspective to contemporary uses
	3.3 Current status of higher plants in drug discovery
	3.4 New prospects in drug discovery from plants
	3.5 Current context of barriers
	3.6 Conclusion: approaches to circumventing the barriers and challenges
	Acknowledgements
	Disclaimer
	Funding
	References
4 Biomining fungal endophytes from tropical plants and seaweeds for drug discovery
	4.1 Introduction
	4.2 Endophytic fungi from terrestrial plants
	4.3 Endophytic fungi from the Pandanaceae
	4.4 Endophytic fungi from estuarine and marine plants
	4.5 Endophytic fungi from seaweeds
	4.6 Emerging techniques for optimizing the metabolic potential of fungal endophytes
	4.7 Concluding remarks
	4.8 Acknowledgments
	References
	Further reading
5 Biomedicine developments based on marine biodiversity: present and future
	5.1 Marine biodiversity
	5.2 Threats to biodiversity
	5.3 Marine biomedicine
	5.4 Conclusions
	References
6 Superbugs, silver bullets, and new battlefields
	6.1 Introduction
	6.2 Antibiotics and resistance
	6.3 Drug resistance and tolerance
	6.4 Biofilms and resistance
		6.4.1 Biofilm and superbugs
		6.4.2 Biofilm on indwelling medical devices
	6.5 Spread of Resistance
		6.5.1 Tools and Mechanisms
	6.6 Bacterial social interactions’ influence on drug resistance
		6.6.1 Bacterial persistence
		6.6.2 Bacterial population dynamics
	6.7 Alternative therapeutic approaches
		6.7.1 Identification of new targets
		6.7.2 Bacteriophage cocktails
		6.7.3 Phage lysin enzymes
		6.7.4 Vaccines
		6.7.5 Antimicrobial nanoparticles
		6.7.6 Thinking outside the box
	6.8 Conclusion
	References
	Further Reading
7 The benefits of active substances in amphibians and reptiles and the jeopardy of losing those species forever
	7.1 Introduction
	7.2 Amphibians
		7.2.1 Secretions of the anuran skin
		7.2.2 Amphibian species around us: hidden producers of valuable compounds
			7.2.2.1 Bombinatoridae
			7.2.2.2 Fire-bellied toad (Bombina bombina)
				7.2.2.2.1 Distribution, biology, threats
				7.2.2.2.2 Medical importance
			7.2.2.3 Yellow-bellied toad (Bombina variegata)
				7.2.2.3.1 Distribution, biology, threats
				7.2.2.3.2 Medical importance
			7.2.2.4 Bufonidae
				7.2.2.4.1 European common toad (Bufo bufo)
					Distribution, biology, threats
					Medical importance
				7.2.2.4.2 Green toad (Bufotes viridis)
					Distribution, biology, threats
					Medical importance
	7.3 Reptiles
		7.3.1 Snake venoms
			7.3.1.1 Viperidae
				7.3.1.1.1 Nose-horned viper (Vipera ammodytes)
					Distribution, biology, threats
					Medical importance
						Enzymatic proteins in V. a. ammodytes proteome
						Nonenzymatic proteins in V. a. ammodytes proteome
	7.4 Why is it important to maintain these wild species viable?
	Acknowledgments
	References
8 Human genetic diversity in health and disease
	8.1 Genetic diversity in humans
	8.2 Epigenetic diversity in humans
	8.3 Translational potential of human genetic and epigenetic diversity
	References
9 Potential for cancer treatment: natural products from the Balkans
	9.1 Introduction
	9.2 Genus Alnus
		9.2.1 Alnus incana (L.) Moench
		9.2.2 Alnus glutinosa (L.) Gaertn
		9.2.3 Alnus viridis (Chaix) DC
	9.3 Genus Euphorbia
		9.3.1 Euphorbia dendroides L
		9.3.2 Euphorbia esula L
		9.3.3 Euphorbia nicaeensis All
		9.3.4 Euphorbia peplus L
		9.3.5 Euphorbia palustris L
		9.3.6 Euphorbia platyphyllos L
		9.3.7 Euphorbia salicifolia Host
		9.3.8 Euphorbia serrulata Thuill
		9.3.9 Euphorbia taurinensis All
		9.3.10 Euphorbia villosa W. et K
	9.4 Genus Achillea
		9.4.1 Achillea clavennae L
		9.4.2 Achillea millefolium L
	9.5 Other genera
		9.5.1 Genus Sideritis L
		9.5.2 Genus Laserpitium L
		9.5.3 Genus Digitalis L
		9.5.4 Genus Micromeria Benth
		9.5.5 Genus Nepeta L
		9.5.6 Genus Teucrium L
		9.5.7 Genus Salvia L
		9.5.8 Genus Helichrysum Mill
	9.6 Division Marchantiophyta
		9.6.1 Marchantia polymorpha L
		9.6.2 Conocephalum conicum (L.) Dum
	9.7 Traditional medicinal uses of plants from the Balkans
	9.8 Conclusions
	References
10 Biodiversity of wild fruits with medicinal potential in Serbia
	10.1 Wild fruits
	10.2 Natural functional food
	10.3 Preventive nutrition and biomedicine
	10.4 Wild fruits in Serbia
	10.5 Biologically active natural compounds
	10.6 Biomedical significance of wild fruits
		10.6.1 Antioxidant and antiradical activity
		10.6.2 Protective effect
		10.6.3 Against disease-causing organisms
		10.6.4 Against metabolic disorders
		10.6.5 Activity in cell growth and development
		10.6.6 Antiinflammatory activity
		10.6.7 Antitumor and anticancer activities
		10.6.8 Neural and psychotic activities
		10.6.9 Enzyme inhibitory activity
		10.6.10 Against cardiovascular disorders
		10.6.11 Immunomodulatory activity
		10.6.12 Against gastrointestinal disorders
		10.6.13 Against age-related disorders
		10.6.14 Against general health disorders
		10.6.15 Against reproductive system disorders
	10.7 Species with a pronounced biomedical potential
	References
11 Botanicals from the Himalayas with anticancer potential: an emphasis on the Kashmir Himalayas
	11.1 Introduction
	11.2 Geographical and climatic features
	11.3 An overview of the plant diversity
	11.4 Important potential anticancer wild plants
		11.4.1 Acacia nilotica (babul)
		11.4.2 Achillea millefolium (yarrow)
		11.4.3 Achyranthes aspera (Prickly Chaff Flower)
		11.4.4 Aegle marmelos (bael)
		11.4.5 Agrimonia pilosa (hairy agrimony)
		11.4.6 Anagallis arvensis (scarlet pimpernel)
		11.4.7 Andrographis paniculata (king of bitters)
		11.4.8 Aphanamixis polystacha (rohituka)
		11.4.9 Arisaeama jacquemontii (Jacquemont’s Cobra Lily)
		11.4.10 Asparagus filicinus (fern asparagus)
		11.4.11 Bacopa monnieri (pennell)
		11.4.12 Berberis vulgaris (European barberry)
		11.4.13 Cannabis sativa (marijuana)
		11.4.14 Castanea sativa (chestnut)
		11.4.15 Centella asiatica (asiatic pennywort)
		11.4.16 Cichorium intybus (coffeeweed)
		11.4.17 Cimicifuga foetida (foetid bugbane)
		11.4.18 Coriandrum sativum (coriander)
		11.4.19 Crataegus species (hawthorn)
		11.4.20 Curcuma longa (turmeric)
		11.4.21 Cuscuta reflexa (dodder)
		11.4.22 Cynodon dactylon (Bermuda grass)
		11.4.23 Elaeagnus angustifolia (Russian olive)
		11.4.24 Euphorbia helioscopia (sun spurge)
		11.4.25 Euphorbia tirucalli (fire sticks)
		11.4.26 Mangifera indica (mango)
		11.4.27 Matricaria chamomilla (German chamomile)
		11.4.28 Momordica charantia (bitter melon)
		11.4.29 Narcissus tazetta (bunchflower daffodil)
		11.4.30 Oroxylum indicum (India caper)
		11.4.31 Oxalis corniculata (creeping woodsorrel)
		11.4.32 Paeonia emodi (Himalayan peony)
		11.4.33 Persicaria hydropiper (syn.: Polygonum hydropiper) (water pepper)
		11.4.34 Pinus species (pines)
		11.4.35 Plectranthus species (coleus)
		11.4.36 Plumbago zeylanica (Ceylon leadwort)
		11.4.37 Portulaca oleracea (common purslane)
		11.4.38 Potentilla species (cinquefoil)
		11.4.39 Prangos pabularia (prangos)
		11.4.40 Rheum webbianum (rhubarb)
		11.4.41 Rhodiola imbricata (golden root)
		11.4.42 Saxifraga stolonifera (strawberry saxifrage)
		11.4.43 Sida cordifolia (bala)
		11.4.44 Silybum marianum (milk thistle)
		11.4.45 Sinopodophyllum hexandrum (syn.: Podophyllum emodi) (Himalayan may apple)
		11.4.46 Solanum nigrum (European black nightshade)
		11.4.47 Stellaria media (chickweed)
		11.4.48 Syzygium cumini (jamun)
		11.4.49 Tabernaemontana divaricata (crape jasmine)
		11.4.50 Terminalia arjuna (arjuna)
		11.4.51 Tribulus terrestris (goat’s head)
		11.4.52 Trillium govanianum (nag chhatri)
		11.4.53 Ulmus wallichiana (elm)
		11.4.54 Verbena officinalis (common verbena)
		11.4.55 Viscum album (mistletoe)
		11.4.56 Zanthoxylum armatum (winged prickly ash)
		11.4.57 Ziziphus mauritiana (Indian jujube)
	11.5 Important potential anticancer cultivated plants
		11.5.1 Abelmoschus esculentus (okra)
		11.5.2 Allium sativum (garlic)
		11.5.3 Arachis hypogaea (peanut)
		11.5.4 Armoracia rusticana (Japanese horseradish)
		11.5.5 Avena sativa (oats)
		11.5.6 Brassica juncea (mustard)
		11.5.7 Brassica napus (rapeseed)
		11.5.8 Brassica oleracea (cabbage)
		11.5.9 Brassica rapa ssp. rapa (turnip)
		11.5.10 Camellia sinensis (green tea)
		11.5.11 Capsicum annum (pepper)
		11.5.12 Crocus sativus (saffron)
		11.5.13 Cucurbita pepo (pumpkin)
		11.5.14 Daucus carota ssp. sativus (black carrot)
		11.5.15 Foeniculum vulgare (fennel)
		11.5.16 Fragaria ananassa (strawberry)
		11.5.17 Glycine max (soyabean)
		11.5.18 Helianthus annuus (sunflower)
		11.5.19 Helianthus tuberosus (artichoke)
		11.5.20 Hordeum vulgare (barley)
		11.5.21 Ipomoea batatas (sweet potato)
		11.5.22 Lagenaria siceraria (calabash or white-flowered gourd)
		11.5.23 Linum usitatissimum (linseed)
		11.5.24 Malus domestica (apple)
		11.5.25 Nigella sativa (black cumin)
		11.5.26 Ocimum basilicum (basil)
		11.5.27 Oryza sativa (rice)
		11.5.28 Panicum miliaceum (finger millet)
		11.5.29 Phaseolus vulgaris (bean)
		11.5.30 Phyllanthus emblica (amla)
		11.5.31 Piper betle (betel vine)
		11.5.32 Piper nigrum (black pepper)
		11.5.33 Pisum sativum (pea)
		11.5.34 Prunus dulcis (almond)
		11.5.35 Raphanus raphanistrum ssp. sativus (radish)
		11.5.36 Secale cereal (rye)
		11.5.37 Sesamum indicum (sesame)
		11.5.38 Solanum lycopersicum (tomato)
		11.5.39 Solanum melongena (brinjal)
		11.5.40 Solanum tuberosum (potato)
		11.5.41 Sorghum species (sorghum)
		11.5.42 Trigonella foenum-graecum (fenugreek)
		11.5.43 Triticum species (wheat)
		11.5.44 Vigna unguiculata (cowpea)
		11.5.45 Vitis vinifera (grapes)
		11.5.46 Withania somnifera (ashwagandha)
		11.5.47 Zea mays (maize)
		11.5.48 Zingiber officinale (ginger)
	11.6 Important potential anticancer exotic plants
		11.6.1 Calendula officinalis (marigold)
		11.6.2 Eucalyptus species (gum tree)
		11.6.3 Robinia pseudoacacia (black locust)
		11.6.4 Sambucus nigra (elder)
	11.7 Other alternative plants
	11.8 Conclusions
	References
12 Diversity and bioprospect significance of macrofungi in the scrub jungles of southwest India
	12.1 Introduction
	12.2 Study area
	12.3 Survey and data analysis
	12.4 Richness, diversity, and survey interval
	12.5 Core group fungi
	12.6 Substrate preference
	12.7 Noteworthy fungi
	12.8 Conclusions
	Acknowledgments
	References
13 Mushroom and plant extracts as potential intervention supplements in diabetes management
	13.1 Introduction
	13.2 The effect of hyperglycemia in cells
	13.3 Oxidative stress in diabetes
	13.4 Mushroom and plant extracts in the treatment of diabetes
		13.4.1 Centaurium erythraea Rafn
		13.4.2 Castanea sativa
		13.4.3 β-Glucan-enriched cereal grain extracts
		13.4.4 Lactarius deterrimus
	Acknowledgments
	References
14 Anticancer activities of marine macroalgae: status and future perspectives
	14.1 Introduction
	14.2 Status of reported anticancer activities of marine macroalgae
	14.3 Cytotoxic, antiproliferative, and growth inhibitory activities of marine macroalgae
		14.3.1 In vitro antitumor activities of marine macroalgae
		14.3.2 In vivo antiproliferative and cytotoxic activities
		14.3.3 Induced programmed cell death by macroalgae
	14.4 Antiangiogenic activity of marine macroalgae
	14.5 Antiinvasive and antimetastatic activity of marine macroalgae
	14.6 Clinical trials
	14.7 Structure–function relation of anticancer compounds isolated from marine macroalgae
	14.8 Inhibition of carcinogenic factors
	14.9 Impact of physical and environmental factors on anticancer activities
	14.10 Prospective for anticancer research in seaweeds
	14.11 Conclusion
	References
15 Insights into the bioactive compounds of endophytic fungi in mangroves
	15.1 Introduction
	15.2 Endophytic fungi colonization in marine environment
	15.3 Mangrove endophytic fungi
	15.4 Distribution of mangrove endophytic fungi
	15.5 Factors influencing the endophytic fungal distribution
	15.6 Environmental condition
		15.6.1 Season
		15.6.2 Host plant factors
		15.6.3 Variation among different plant parts
		15.6.4 Crown height and canopy cover
	15.7 Mangrove endophytic fungi are a great source of novel bioactive compounds
	15.8 In-depth study of mangrove endophytic fungi bioactivities
		15.8.1 Antimicrobial, antifungal, antiviral, and antimalarial activities
		15.8.2 Anticancer and cytotoxic activities
		15.8.3 Therapeutic agents for Alzheimer’s disease
		15.8.4 Antidiabetic activity
		15.8.5 Antioxidant activity
	15.9 Production of enzymes
	15.10 Heavy metal tolerant property
	15.11 Biocontrol agent
	Conclusions
	References
16 Essential oil of mint: current understanding and future prospects
	16.1 Introduction
	16.2 Mint cultivation
		16.2.1 Disease and pest control management in mint
	16.3 Mint oil
		16.3.1 Role of glandular trichomes in synthesis of essential oil of mint
	16.4 Uses of menthol
		16.4.1 A source of biofuel
		16.4.2 Antioxidant and antiinflammatory features
		16.4.3 Antibacterial, antimicrobial, and cytotoxic activities
	16.5 Elicitors in mint production: a case study
		16.5.1 Sodium alginate
		16.5.2 Growth parameters
		16.5.3 Physiological and biochemical parameters
		16.5.4 Yield and quality parameters
	Conclusions
	References
17 Azadirachta indica: the medicinal properties of the global problems-solving tree
	17.1 Introduction
	17.2 Anticancer properties of A. indica (neem tree)
		17.2.1 Anticancer study by Kigodi and coworkers
		17.2.2 Anticancer study by Kikuchi and coworkers
		17.2.3 Anticancer study by Gualtieri and coworkers
		17.2.4 Anticancer study by Kashif and coworkers
	17.3 Antidiabetic properties of A. indica (neem tree)
		17.3.1 Antidiabetic study by Ponnusamy and coworkers
		17.3.2 Antidiabetic study by Perez-Gutierrez and coworkers
		17.3.3 Antidiabetic study by Satyanarayana and coworkers
	17.4 Antimicrobial properties of A. indica (neem tree)
		17.4.1 Antimicrobial study by Siddiqui and coworkers
		17.4.2 Antimicrobial study by Siddiqui and coworkers
		17.4.3 Antimicrobial study by Siddiqui and coworkers
		17.4.4 Antimicrobial study by Chianese and coworkers
	17.5 Conclusions
	Acknowledgments
	References
18 Advancements in plant transgenomics approach for the biopharmaceutics and vaccines production
	18.1 Introduction
	18.2 Transgenic plants in biopharmaceuticals
		18.2.1 Selection of a plant model and production species
			18.2.1.1 Leaf part of crop
			18.2.1.2 Seeds from crop plants
			18.2.1.3 Fruit and vegetable crops
		18.2.2 Expression system
			18.2.2.1 Transient expression system
			18.2.2.2 Heritable expression system
		18.2.3 Transgene location
		18.2.4 Humanization of glycan structures in products
		18.2.5 Optimization and secretion of protein of interest
		18.2.6 Purity, quality control, and safety standard tested
		18.2.7 Release and agricultural-scale cultivation of transgenic plants
	18.3 Transgenic plants in vaccine development
		18.3.1 Plants for vaccine expression
		18.3.2 Subunit vaccines
		18.3.3 Edible vaccines
		18.3.4 Chloroplast-based vaccines
	18.4 Plant transgenomics: a way forward
	18.5 Conclusions
	References
19 Secondary metabolites from endangered Gentiana, Gentianella, Centaurium, and Swertia species (Gentianaceae): promising n...
	19.1 Introduction
	19.2 Secondary metabolites
		19.2.1 Terpenoids
			19.2.1.1 Iridoids
		19.2.2 Phenolics
			19.2.2.1 Xanthones
				19.2.2.1.1 Biosynthesis of xanthones
			19.2.2.2 C-Glucoflavones
	19.3 Gentianaceae
	19.4 The importance of biodiversity as a source of naturally derived bioactive molecules
	19.5 Pharmacological activities of xanthones
		19.5.1 1-Hydroxy-3,5-dimethoxyxanthone
		19.5.2 Mesuaxanthone A
		19.5.3 Gentisein
		19.5.4 Gentisin and isogentisin
		19.5.5 Demethylbellidifolin
		19.5.6 Bellidifolin
		19.5.7 Swerchirin
		19.5.8 Gentiacaulein and gentiakochianin
		19.5.9 Swertiaperenine
		19.5.10 Decussatin
		19.5.11 Norswertianin
		19.5.12 Gentioside
		19.5.13 Eustomin and demethyleustomin
		19.5.14 Corymbiferin
		19.5.15 Lanceoside
	19.6 Pharmacological activities of secoiridoids
		19.6.1 Swertiamarin
			19.6.1.1 Immunomodulatory, anti-inflammatory, and antioxidant activity
			19.6.1.2 Hepatoprotective activity
			19.6.1.3 Hypoglycemic and anti-diabetic activity
			19.6.1.4 CNS modulating activity
		19.6.2 Gentiopicroside (gentiopicrin, GP)
			19.6.2.1 Hypoglycemic and anti-diabetic activity
			19.6.2.2 CNS modulating activity
			19.6.2.3 Hepatoprotective activity
			19.6.2.4 Anti-inflammatory activity
		19.6.3 Sweroside
			19.6.3.1 Hepatoprotective and anti-inflammatory activity
			19.6.3.2 Hipoglycemic and anti-diabetic activity
			19.6.3.3 Antimicrobial activity
			19.6.3.4 Wound-healing activity
			19.6.3.5 Cytotoxic and antitumor activity
	19.7 Conclusion
	Acknowledgments
	Abbreviations
	References
20 Grape (Vitis vinifera L.): health benefits and effects of growing conditions on quality parameters
	20.1 Introduction
		20.1.1 Grapevine in folk medicine
	20.2 Grape phenolics and health benefits
		20.2.1 Biological activity of grape skin extract
		20.2.2 Biological activity of grape seed extract
	20.3 Viticulture and studies of grape phenolic compounds in Montenegro
	20.4 Influence of grapevine growing conditions on grape quality and its biological activity—our results
		20.4.1 Growing conditions
			20.4.1.1 Soil properties
			20.4.1.2 Climatic parameters
			20.4.1.3 Fertilization
			20.4.1.4 Irrigation
		20.4.2 Leaf and grape parameters
			20.4.2.1 Elemental composition of leaf blade
			20.4.2.2 Elemental composition of grape skin
			20.4.2.3 Grape yield and total soluble solids
			20.4.2.4 Grape total phenolics
		20.4.3 Effects of growing conditions on leaf and grape parameters
		20.4.4 Anticancer properties of grape skin extracts
		20.4.5 Intake of elements and phenolics by grape
	20.5 Conclusions and future perspectives
	Acknowledgments
	References
21 Flavonoids in cancer therapy: current and future trends
	21.1 Flavonoids
		21.1.1 Classification and distributions of flavonoids families
			21.1.1.1 Flavones
			21.1.1.2 Flavonols
			21.1.1.3 Flavanones
			21.1.1.4 Flavanols, flavan-3-ols or catechins
			21.1.1.5 Isoflavones
			21.1.1.6 Anthocyanins
		21.1.2 Structure and biosynthesis of flavonoids
	21.2 Therapeutic potential of flavonoids in cancer
		21.2.1 Antiproliferative effects of flavonoids on cancer
			21.2.1.1 Flavones
			21.2.1.2 Flavonols
			21.2.1.3 Flavanones
			21.2.1.4 Flavanols, flavan-3-ols, or catechins
			21.2.1.5 Isoflavones
			21.2.1.6 Anthocyanins
		21.2.2 Apoptotic effects of flavonoids on cancer
			21.2.2.1 Flavones
			21.2.2.2 Flavonols
			21.2.2.3 Flavanones
			21.2.2.4 Flavanols, flavan-3-ols, or catechins
			21.2.2.5 Isoflavones
			21.2.2.6 Anthocyanins
		21.2.3 Antiinvasive, antimigration, and antimetastatic effects of flavonoids on cancer cell
			21.2.3.1 Flavones
			21.2.3.2 Flavonols
			21.2.3.3 Flavanones
			21.2.3.4 Flavanols, flavan-3-ols, or catechins
			21.2.3.5 Isoflavones
			21.2.3.6 Anthocyanins
		21.2.4 Flavonoids in reversal of drug resistance
			21.2.4.1 Flavones
			21.2.4.2 Flavonols
			21.2.4.3 Flavanones
			21.2.4.4 Flavanols, flavan-3-ols, or catechins
			21.2.4.5 Isoflavones
		21.2.5 Flavonoids in angiogenesis
			21.2.5.1 Flavones
			21.2.5.2 Flavonols
			21.2.5.3 Flavanols, flavan-3-ols, or catechins
			21.2.5.4 Anthocyanins
		21.2.6 Flavonoids and the stem cell properties of cancer cells
			21.2.6.1 Flavones
			21.2.6.2 Flavonols
			21.2.6.3 Flavanols, flavan-3-ols, or catechins
			21.2.6.4 Isoflavones
	21.3 Conclusion and future perspectives
	Reference
22 Personalized biomedicine in cancer: from traditional therapy to sustainable healthcare
	22.1 Introduction
	22.2 Biomedicine approaches in cancer
		22.2.1 Perspectives in the diagnosis and tracking of cancer initiation
		22.2.2 Novel approaches to prevent cancer progression and treatment of cancer
			22.2.2.1 Drug discovery
			22.2.2.2 Epigenomics and epigenetic therapy
			22.2.2.3 Immunotherapy
			22.2.2.4 Targeted therapy
			22.2.2.5 Pharmacogenomics for cancer therapy
	22.3 Development of drug discovery in biomedicine (model systems in drug discovery)
		22.3.1 Using computational models for drug design and discovery
		22.3.2 Pharmacological modeling and in vitro testing
		22.3.3 Using in vivo models for drug development
	22.4 The future direction of biomedicine for healthcare and conclusion
	References
23 Tumor-specific genetic profiling and therapy in biomedicine
	23.1 Changes in cancer cells in a tumor mass
		23.1.1 Altered marker expression or differentiation
		23.1.2 Altered intracellular signaling
		23.1.3 Synthesizing tumor-specific transcripts
		23.1.4 Evading from Immune system cells
		23.1.5 Evading tumor suppressor genes or proteins
		23.1.6 Mutations in cell cycle checkpoints
		23.1.7 Mutations in cellular growth-related genes or proteins
		23.1.8 Epigenetic changes during tumorigenesis
	23.2 Genetic profiling for genomic instability in cancer cells
		23.2.1 Cancer cell-specific (DNA and mitochondrial DNA) sequencing
		23.2.2 Genetic tests for tumor progression related genes, RNAs or proteins
	23.3 Personalized therapies
		23.3.1 Drug implementation based on the genetic background (pharmacogenomics)
		23.3.2 Marker-based drug therapies using wet lab techniques and bioinformatic tools
		23.3.3 Following circulating tumor cells and therapies
		23.3.4 Tumor-specific gene therapies
		23.3.5 Immunotherapy using immune system cells
			23.3.5.1 CAR-T cells
			23.3.5.2 CAR-NK cells
			23.3.5.3 Macrophages for regulation of tumor microenvironment
	23.4 Future perspectives and conclusion
	References
24 Vascular and bone marrow explant models to assess in vitro hematotoxicity of herbal extracts
	24.1 Background
	24.2 Material and methods
		24.2.1 Plant extracts preparation
			24.2.1.1 Hematopoietic tissues and cells isolation
			24.2.1.2 cKit+ cell isolation
			24.2.1.3 In vitro cell culture
			24.2.1.4 Colony-forming unit cells
			24.2.1.5 Fluorescence-activated cell sorting analysis
	24.3 Results and discussion
	24.4 Conclusion
	Acknowledgments
	Competing interests
	Ethics approval and consent to participate
	Funding
	References
25 Nature-inspired synthetic analogues of quorum sensing signaling molecules as novel therapeutics against Pseudomonas aeru...
	25.1 Introduction
	25.2 P. aeruginosa infections
	25.3 Therapeutic options against P. aeruginosa infections
		25.3.1 Inhibitors of adhesion and biofilms
		25.3.2 Inhibition of Type III secretion system
		25.3.3 Quorum sensing system as antivirulence target
	25.4 Quorum sensing in P. aeruginosa
		25.4.1 Inhibition of P. aeruginosa quorum sensing signaling
			25.4.1.1 Inhibition of signal generation
			25.4.1.2 Inactivation of autoinducers
			25.4.1.3 Competition for Binding to Receptors
		25.4.2 Natural products as quorum sensing inhibitors
		25.4.3 Synthetic compounds with quorum sensing inhibitory activity
			25.4.3.1 Inhibitors of las signaling pathway
			25.4.3.2 Inhibitors of Rhl signaling pathway
			25.4.3.3 Inhibitors of PQS signaling pathway
			25.4.3.4 Inhibitors of IQS signaling pathway
			25.4.3.5 Virulence factors inhibitors
			25.4.3.6 Metal complexes as quorum sensing inhibitors
	25.5 Perspective of antivirulence therapy
	Abbreviations
	References
26 Biomedicine: biodiversity’s panacea? Context of commodification
	26.1 Introduction
	26.2 A brief primer on the concept of ecosystem services as related to biodiversity and biomedicine
	26.3 Biodiversity, bioprospecting, and human welfare
		26.3.1 Biodiversity
		26.3.2 Biomedicine and bioprospecting
		26.3.3 Human welfare and ownership of nature
		26.3.4 Producing medicines from nature
	26.4 Next steps
		26.4.1 Developing a better understanding of biodiversity and conservation
			26.4.1.1 Documentation of biodiversity and biomedical implications
			26.4.1.2 Assessment and documentation of conservation outcomes
		26.4.2 Conflict resolution, cross-cultural communication, and education
			26.4.2.1 Guidelines for conflict management in conservation of biodiversity
		26.4.3 Policies and regulatory frameworks, plus enforcement
			26.4.3.1 Established institutions and efforts
	Conclusion
	Acknowledgements
	Disclaimer
	References
Index
Back Cover




نظرات کاربران