ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Sustainable Nanocellulose and Nanohydrogels from Natural Sources (Micro and Nano Technologies)

دانلود کتاب نانوسلولز و نانوهیدرژل پایدار از منابع طبیعی (فناوری های میکرو و نانو)

Sustainable Nanocellulose and Nanohydrogels from Natural Sources (Micro and Nano Technologies)

مشخصات کتاب

Sustainable Nanocellulose and Nanohydrogels from Natural Sources (Micro and Nano Technologies)

ویرایش: 1 
نویسندگان: , ,   
سری: Micro and Nano Technologies 
ISBN (شابک) : 0128167890, 9780128167892 
ناشر: Elsevier 
سال نشر: 2020 
تعداد صفحات: 415 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 28 مگابایت 

قیمت کتاب (تومان) : 47,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Sustainable Nanocellulose and Nanohydrogels from Natural Sources (Micro and Nano Technologies) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانوسلولز و نانوهیدرژل پایدار از منابع طبیعی (فناوری های میکرو و نانو) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نانوسلولز و نانوهیدرژل پایدار از منابع طبیعی (فناوری های میکرو و نانو)



نانوسلولز و نانوهیدرژل های پایدار از منابع طبیعی استفاده از پلیمرهای زیستی را در زمینه های کاربردی خاص مانند الکترونیک، انرژی، کالاهای مصرفی، مواد بسته بندی، درمان، تصفیه آب و مهندسی بررسی می کند، و چه چیزی را خاص می کند. پلیمر برای درگیر کردن آن در این کاربردها. این یک منبع مرجع مهم برای کسانی است که مایلند در مورد چگونگی استفاده از نانوکامپوزیت های بیوپلیمری در پایداری و حفاظت از محیط زیست بیشتر بیاموزند.

بیوپلیمرها، از جمله پلیمرهای گیاهی و دریایی، نقش مهمی در تشکیل و حفظ پایداری نانوکامپوزیت‌های صنعتی دارند. عملکردهای مشترک آنها اصلاح سطح و محافظت از هسته های بسیار ناپایدار اکسیداتیو، به عنوان پایه ای پایدار برای نگه داشتن اهداف متعدد و به عنوان محافظی برای فلزات غیر آلی و بسیار سمی است. این نانوکامپوزیت های مبتنی بر پلیمرهای زیستی برای کاربردها در بخش های الکترونیک، خودرو، ساخت و ساز و زیست پزشکی استفاده می شوند.


توضیحاتی درمورد کتاب به خارجی

Sustainable Nanocellulose and Nanohydrogels from Natural Sources explores the use of biopolymers in specific application areas such as electronics, energy, consumer goods, packaging materials, therapeutics, water treatment and engineering, and what makes the particular polymer to engage it in these applications. This is an important reference source for those who would like to learn more about how biopolymeric nanocomposites are used in sustainability and environmental protection.

Biopolymers, including plant and sea-based polymers, play an important role in the formation and maintaining the stability of industrial nanocomposites; their common functions being the surface modification and protection for the highly oxidative-unstable cores, as stable base for holding multiple targets, and as a shield for the inorganic and highly toxic metals. These biopolymer-based nanocomposites are being used for applications in the electronics, automobile, construction and biomedical sectors.



فهرست مطالب

Cover
Sustainable Nanocellulose and Nanohydrogels From Natural Sources
Copyright
Dedication
Contents
List of Contributors
About the Editors
Preface
1 General introduction on sustainable nanocellulose and nanohydrogel matrices
	Abbreviations
	1.1 Background
	1.2 Nanocelluloses: fundamental properties, synthesis, and applications
		1.2.1 Nanocelluloses: general methods of synthesis and applications
			1.2.1.1 Mechanical processing
			1.2.1.2 Acid hydrolysis
			1.2.1.3 Enzymatic hydrolysis
			1.2.1.4 Oxidation-mediated processes
	1.3 Nanohydrogels: fundamental properties, synthesis, and applications
		1.3.1 Nanohydrogels: fundamental properties
			1.3.1.1 Swelling properties
			1.3.1.2 Mechanical properties
			1.3.1.3 Biocompatibility and sustainability
		1.3.2 Nanohydrogels: general methods of synthesis
			1.3.2.1 Nanohydrogels
			1.3.2.2 Bulk polymerization
			1.3.2.3 Solution polymerization or cross-linking
			1.3.2.4 Suspension polymerization
			1.3.2.5 Radical polymerization
			1.3.2.6 Graft polymerization
	1.4 Adsorption of pollutants by nanocelluloses and nanohydrogels
		1.4.1 Nanocellulose-based adsorbents
			1.4.1.1 Adsorption of organic pollutants
			1.4.1.2 Adsorption of heavy metal species from water
			1.4.1.3 Nanocellulose-based photocatalysts
			1.4.1.4 Adsorption using nanocellulose membranes and filters
		1.4.2 Nanohydrogels-based adsorbents
	Acknowledgment
	References
2 Nanocellulose and nanohydrogel for energy, environmental, and biomedical applications
	2.1 Introduction
		2.1.1 Nanocellulose
		2.1.2 Nanohydrogel and nanostructured conductive hydrogels
	2.2 Synthesis of nanocellulose and nanohydrogel
		2.2.1 Nanocellulose
			2.2.1.1 Chemical methods
			2.2.1.2 Mechanical methods
		2.2.2 Nanostructured conductive hydrogel
	2.3 Nanocellulose and nanostructured hydrogel for energy applications
		2.3.1 Supercapacitors
		2.3.2 Lithium-ion batteries
		2.3.3 Electrocatalysts for energy conversion reactions
	2.4 Nanocellulose and nanohydrogel for environmental applications
		2.4.1 Adsorption mechanism
		2.4.2 Pollutants adsorption and water collection
		2.4.3 Oil–water separation
	2.5 Nanocellulose and nanohydrogel for biomedical applications
		2.5.1 Biosensors
		2.5.2 Wound healing
		2.5.3 Drug delivery
		2.5.4 Cardiac recovery
	2.6 Summary
	References
3 Market analysis and commercially available cellulose and hydrogel-based composites for sustainability, clean environment,...
	3.1 Introduction
	3.2 Trends in composites business
	3.3 Overview of cellulose-based materials
		3.3.1 Developments in nanocellulose
	3.4 Developments in hydrogel-based composites
		3.4.1 Cellulose-based hydrogel composites
	3.5 Cellulose and hydrogel-based composites from a sustainability point of view and environmental imprint
		3.5.1 Forest business in sustaining the supply chain of cellulose: processes and environmental implications
	3.6 Summary and conclusion
	References
	Further reading
4 Nanocellulose and nanohydrogels for the development of cleaner energy and future sustainable materials
	4.1 Introduction
	4.2 Nanocellulose extraction from natural resources
		4.2.1 Preparation methods of cellulose nanofibers
			4.2.1.1 High-pressure homogenization
			4.2.1.2 Grinding
			4.2.1.3 Cryocrushing
			4.2.1.4 Refining
		4.2.2 Preparation of cellulose nanocrystals
			4.2.2.1 Acid hydrolysis
			4.2.2.2 Hydrolysis with solid acid
			4.2.2.3 Hydrolysis with gaseous acids
			4.2.2.4 Hydrolysis with metal salt catalyst
	4.3 Nanocellulose for energy and other applications
		4.3.1 Nanocellulose for energy storage
		4.3.2 Nanocellulose for energy harvester
		4.3.3 Nanocellulose for wastewater treatment
		4.3.4 Nanocellulose for paper transistor
		4.3.5 Nanocellulose as biomaterials
	4.4 Nanohydrogels
	4.5 Nanohydrogels as sustainable materials
		4.5.1 Biotechnological applications
		4.5.2 Nanohydrogel for wound care
		4.5.3 Nanohydrogel for drug delivery
		4.5.4 Nanohydrogel for food packaging
		4.5.5 Future of nanogel for sensing applications
	4.6 Conclusions
	References
5 Nanocellulose and nanohydrogel-mediated sustained drug delivery: smart medical technology
	5.1 Introduction
	5.2 Hydrogels
		5.2.1 Nanohydrogels
		5.2.2 Nanohydrogels in drug delivery
	5.3 Nanocellulose
	5.4 Nanocellulose safety and biodegradability
	5.5 Nanocellulose-based smart drug delivery systems
		5.5.1 pH-responsive hydrogels
		5.5.2 Aerogels
		5.5.3 Injectable hydrogels, implants, and films for topical
		5.5.4 Magnetic nanocellulose
		5.5.5 Other nanocellulose-based smart medical technologies
	5.6 Conclusion
	References
6 Current role and future developments of biopolymers in green and sustainable chemistry and catalysis
	6.1 Introduction
	6.2 Biopolymers
		6.2.1 Biopolymers from renewable sources
		6.2.2 Classes of biomass
			6.2.2.1 Starch
			6.2.2.2 Cellulose
				6.2.2.2.1 Current and potential applications
			6.2.2.3 Hemicellulose
			6.2.2.4 Lignin
				6.2.2.4.1 Current and future applications
	6.3 Roles of biopolymers in green chemistry
		6.3.1 Polysaccharides as reinforcing agents in bionanocomposites
		6.3.2 Polysaccharides as fillers
		6.3.3 Natural rubber with polysaccharide fillers as biocomposites
		6.3.4 Metal-polysaccharide nanocomposites
		6.3.5 Starch as a matrix for the synthesis of nanoparticles
		6.3.6 Starch as morphology-directing agent
	6.4 Roles of biopolymers in catalysis
		6.4.1 Chitosan as catalyst support
			6.4.1.1 Cobalt-chitosan catalyst
		6.4.2 Carbonaceous mesoporous materials (Starbon)
	6.5 Conclusion
	References
	Further reading
7 Review of nanocellulose and nanohydrogel matrices for the development of sustainable future materials
	7.1 Introduction
	7.2 Development of nanohydrogel materials based on nanocellulose
		7.2.1 Nanocellulose
			7.2.1.1 Origin of nanocellulose
			7.2.1.2 Nanocellulose preparation
				7.2.1.2.1 Pretreatment methods
				7.2.1.2.2 Mechanical methods
				7.2.1.2.3 Chemical hydrolysis
			7.2.1.3 Nanocellulose characterization
			7.2.1.4 Nanocellulose properties
		7.2.2 Nanohydrogels
		7.2.3 Benefits and downsides of nanohydrogel
			7.2.3.1 Origin of nanohydrogels
				7.2.3.1.1 Based on the nature of polymer
					7.2.3.1.1.1 Natural polymer
					7.2.3.1.1.2 Synthetic polymer
				7.2.3.1.2 Cross-linking type
				7.2.3.1.3 Nanohydrogels based on responsive-stimuli
			7.2.3.2 Methods of preparation of nanohydrogels
				7.2.3.2.1 Water-in-oil (W/O) heterogeneous emulsion methods
				7.2.3.2.2 Emulsification polymerization method
				7.2.3.2.3 Photolithographic method
				7.2.3.2.4 Chemical cross-linking methods
				7.2.3.2.5 Physical self-assembly of interactive polymers
				7.2.3.2.6 Association of nanohydrogels based on polymers
			7.2.3.3 Nanohydrogel characterization
				7.2.3.3.1 Dynamic light scattering
				7.2.3.3.2 Zeta potential
			7.2.3.4 Electron microscopy methods
	7.3 Applications
		7.3.1 Nanocellulose applications
		7.3.2 Nanohydrogel applications
	7.4 Conclusion
	References
8 Nanocellulose and nanohydrogel matrices as sustainable biomass materials: structure, properties, present status, and futu...
	8.1 Introduction
		8.1.1 Nanocelluloses
			8.1.1.1 Structure of nanocellulose
			8.1.1.2 Preparation of nanocellulose
			8.1.1.3 Types of nanocellulose
			8.1.1.4 Properties of nanocellulose
		8.1.2 Nanohydrogel
			8.1.2.1 Classification of nanohydrogels
			8.1.2.2 Properties of hydrogels
		8.1.3 Application and future prospects of nanocellulose and nanohydrogels
	References
9 Biopolymers and biocomposites-mediated sustainable high-performance materials for automobile applications
	9.1 Introduction
	9.2 Biopolymers
	9.3 Biopolymers in automotive sector
		9.3.1 History
		9.3.2 Poly(lactic acid)
			9.3.2.1 Plasticized poly(lactic acid) in automobiles
			9.3.2.2 Elastomer-toughened poly(lactic acid) in automobiles
		9.3.3 Natural fibers
		9.3.4 Biopolyamides
		9.3.5 Biopolypropylene
		9.3.6 Poly(trimethylene terephthalate)
	9.4 Polymer biocomposites in automotive sector
		9.4.1 History
		9.4.2 Different biocomposites in automotive applications
	9.5 Conclusion
	References
10 Nanocellulose-mediated fabrication of sustainable future materials
	10.1 Introduction
	10.2 Types and properties of nanocellulose
		10.2.1 Categories of nanocellulose
		10.2.2 Unique properties of nanocellulose
	10.3 Isolation and surface modification of nanocellulose
		10.3.1 Isolation
		10.3.2 Surface modification
	10.4 Nanocellulose-based smart materials
		10.4.1 Biomedical materials
		10.4.2 Environmental remediation
		10.4.3 Smart sensors
		10.4.4 Food packaging, filler, and nano-coating
		10.4.5 Energy producers, harvesters, and flexible electronics
		10.4.6 Automotive, aviation, and paints
		10.4.7 Polymeric reinforced nanocomposites
		10.4.8 Other functional materials
	10.5 Market projection of nanocellulose and its products
	10.6 Challenges, future trends, and conclusion
	References
11 Nanocellulose reinforced polymer nanocomposites for sustainable packaging of foods, cosmetics, and pharmaceuticals
	11.1 Introduction
	11.2 About nanocellulose
	11.3 Nanocellulose as potential reinforcing nanomaterials for polymer matrices
	11.4 Barrier properties of nanocellulose reinforced polymer nanocomposites for packaging
	11.5 Nanocellulose reinforced degradable/partially degradable polymer nanocomposites
	11.6 Nanocellulose reinforced polymer nanocomposites as prospective packaging materials of foods, cosmetics, and pharmaceut...
	11.7 Nanocellulose as potential nanoreinforcement for active packaging of food, cosmetics, and pharmaceuticals
	11.8 Conclusion and future directions
	References
12 Cellulose and hydrogel matrices for environmental applications
	12.1 Introduction
	12.2 Overview of cellulose
	12.3 By-products of cellulose
	12.4 Advantages of cellulose nanomaterials
	12.5 Classification of cellulose
	12.6 Current challenges
	12.7 Environmental applications of cellulose
		12.7.1 Dye
		12.7.2 Heavy metal
		12.7.3 Oil adsorption
		12.7.4 Air contaminant adsorption
	12.8 Hydrogel
	12.9 History
	12.10 Classification of hydrogels
		12.10.1 By features
		12.10.2 By network
		12.10.3 By source
	12.11 Hydrogel properties
	12.12 Environmental applications of hydrogel
		12.12.1 Dye
		12.12.2 Fluoride
		12.12.3 Heavy metals
	12.13 Conclusion
	References
13 Antioxidative response mechanisms of nanocelluloses and nanohydrogels matrices: a review
	13.1 Background
	13.2 Life cycle of nanocellulose and nanohydrogels
	13.3 Biological impact of nanoparticles
	13.4 Nanocellulose response toward oxidative stress
	13.5 Antioxidant capacity of nanoparticles
	13.6 Drug delivery applications
	13.7 Organ-on-chip culturing applications
	13.8 Application in bone regeneration
	13.9 Application in cardiac regeneration
	13.10 Dental applications
	13.11 Wound healing applications
	13.12 Noncytotoxic cellular uptake
	13.13 Scavenging an inflammatory response
	13.14 Nongenotoxic effects
	13.15 Conclusion
	References
14 Bacterial nanocellulose and its application in wastewater treatment
	14.1 Introduction
	14.2 Bacterial cellulose as hydrogel
		14.2.1 Development in bacterial cellulose research
		14.2.2 Modification of bacterial cellulose
			14.2.2.1 Ex situ modification of bacterial cellulose
			14.2.2.2 In situ modification of bacterial cellulose
	14.3 Potential of bacterial cellulose as biosorbent for heavy metal removal
		14.3.1 Cellulose as adsorbent for heavy metal removal
		14.3.2 Biosorption for heavy metal removal
		14.3.3 Biosorbent
		14.3.4 Bacterial cellulose application in wastewater treatment
	14.4 Conclusion and future perspective
	Acknowledgment
	References
15 Recent developments in nanocellulose and nanohydrogel matrices—towards stem cell research and development
	15.1 Introduction
	15.2 Properties of the nanocelluloses and nanohydrogels
		15.2.1 Physical properties
		15.2.2 Biological properties
	15.3 Nanocellulose-based scaffolds and cell survival
	15.4 Hydrogel matrices and stem cell–based therapies
	15.5 Nano-engineered matrices and controlled drug delivery
	15.6 Stem cell research and developments
		15.6.1 Stem cells in regenerative medicine
		15.6.2 Retention and viability of injected stem cells
		15.6.3 Enhancement of endogenous stem cell functionality
	15.7 Conclusions
	References
16 Role of natural cellulose and hydrogel matrices in stem cell therapy of diabetic foot ulcer
	16.1 Introduction
	16.2 Management of diabetic wound
	16.3 Diabetic wound healing
	16.4 Biomaterial and tissue engineering for diabetic wound care
	16.5 Factors affecting the physical properties of the scaffolds
	16.6 Natural polymers as biomaterial substituents for the diabetic wound healing
		16.6.1 Chitosan as biomaterial scaffold
		16.6.2 Collagen as biomaterial scaffold
	16.7 Specialized techniques for fabrication of biomaterial scaffolds
		16.7.1 Electrospinning
		16.7.2 Phase separation
		16.7.3 Freeze drying
		16.7.4 Stem-cell-based wound dressings and therapeutics
		16.7.5 Mesenchymal stem cells
	16.8 Mesenchymal stem cells for scaffold development
	16.9 Conclusion
	Acknowledgement
	Conflict of interest
	References
	Further reading
17 Nanocellulose in polymer nanocomposite
	17.1 Introduction
	17.2 Nanocellulose
	17.3 Polymer/nanocellulose nanocomposite
	17.4 Reinforcing effects
	17.5 Potential applications and challenges
	17.6 Summary
	References
18 Cellulose-derived materials for drug delivery applications
	18.1 Introduction
	18.2 Classification of cellulose-based polymers
	18.3 Cellulose and its derivatives for drug delivery applications
		18.3.1 Hydroxypropyl methylcellulose in drug delivery
		18.3.2 Cellulose nanocarrier for drug delivery
		18.3.3 Cellulose hydrogel for drug delivery
		18.3.4 Cellulose-inorganic hybrid for drug delivery
		18.3.5 Cellulose derivatives–based drug delivery
	18.4 Conclusion
	References
Index
Back Cover




نظرات کاربران