ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Designing Spaces for Natural Ventilation: An Architect's Guide

دانلود کتاب طراحی فضاها برای تهویه طبیعی: راهنمای معمار

Designing Spaces for Natural Ventilation: An Architect's Guide

مشخصات کتاب

Designing Spaces for Natural Ventilation: An Architect's Guide

ویرایش: [1 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 0415817757, 9780415817752 
ناشر: Routledge 
سال نشر: 2015 
تعداد صفحات: 374
[372] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 18 Mb 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Designing Spaces for Natural Ventilation: An Architect's Guide به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی فضاها برای تهویه طبیعی: راهنمای معمار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب طراحی فضاها برای تهویه طبیعی: راهنمای معمار



اگر فضاها را به درستی طراحی کنید، ساختمان ها می توانند بدون استفاده از سیستم های مکانیکی به طور طبیعی تنفس کنند. این راهنمای قابل دسترس و کامل به شما نشان می دهد که چگونه در بیش از 260 نمودار رنگی و عکس که مطالعات موردی و شبیه سازی های CFD را نشان می دهد. شما می توانید با در نظر گرفتن ساختار، پوشش، مصرف انرژی و فرم ساختمان و همچنین ایجاد آسایش حرارتی و هوای سالم داخل ساختمان به تهویه واقعاً طبیعی دست یابید. با استفاده از ابزارهای تجسم علمی و معماری موجود در اینجا، می توانید استراتژی های تهویه را بدون پیشینه مهندسی توسعه دهید. بخش های مفیدی که علم را خلاصه می کند، قوانین سرانگشتی را توضیح می دهد و آخرین تحقیقات در دینامیک حرارتی و سیالات را به تفصیل شرح می دهد، طرح های شما را پایدار، کارآمد از نظر انرژی و به روز نگه می دارد.


توضیحاتی درمورد کتاب به خارجی

Buildings can breathe naturally, without the use of mechanical systems, if you design the spaces properly. This accessible and thorough guide shows you how in more than 260 color diagrams and photographs illustrating case studies and CFD simulations. You can achieve truly natural ventilation, by considering the building's structure, envelope, energy use, and form, as well as giving the occupants thermal comfort and healthy indoor air. By using scientific and architectural visualization tools included here, you can develop ventilation strategies without an engineering background. Handy sections that summarize the science, explain rules of thumb, and detail the latest research in thermal and fluid dynamics will keep your designs sustainable, energy efficient, and up-to-date.



فهرست مطالب

Half Title
Title Page
Copyright Page
Table of Contents
List of figures
Foreword by Sue Roaf
Acknowledgments
Introduction: Why Do we Talk about Natural Ventilation Now?
	Why we Need Natural Ventilation
	Benefits of Natural Ventilation
	Natural Ventilation and Design
	Natural Ventilation and Energy
	The Literature Gap
	What Is Ventilation, and What Is Natural Ventilation?
	What’s in the Book?
	The Audience of this Book
	The Origin of this Book
	What to Expect from the Book
Part 1 Theories and Scientific Background
	1. The Importance of Space for Natural Ventilation
		1.1. Connected and Detached Spaces
		1.2. The Driving Forces of Natural Ventilation Are Spatial
		1.3. Houses with Impact on the Geometries of Flow
			1.3.1. Sliding Space: The Affleck House
			1.3.2. Bolted Space: The How House
			1.3.3. Incorporated Space: The Esherick House
			1.3.4. The Atrium
			1.3.5. The Northern Courtyard
	2. The Physics of Air Flow
		2.1. Solids and Fluids
		2.2. Lagrangian Versus Eulerian Description as Frame of Reference
		2.3. Properties of Air
		2.4. Material Derivative
		2.5. Conservation of Mass – Conservation of Momentum
		2.6. Forces on Fluid Particles
		2.7. Navier-Stokes Equations
		2.8. Bernoulli’s Equation
		2.9. Boundary Condition
		2.10. Turbulence
		2.11. Reynolds Number
		2.12. K-Epsilon (Two Equation) Model
		2.13. Buoyancy as the Basis for Stack Effect
		2.14. Forced Convection
		2.15. Fluid Dynamics of Weather
		2.16. Air and Moisture
		2.17. What Is Wind? Wind and Obstructions / Wind in Urban Context
		2.18. The Impact of Fluid Dynamics Principles on Spatial Proportions
	3. The Importance of Fresh Air for Occupants’ Health
		3.1. What Is Air?
		3.2. Indoor Air Quality
		3.3. A Brief History of Air and Health Sciences
		3.4. Health and Well-Being
		3.5. Architecture, Health and Air: Alvar Aalto’s Paimio Sanatorium, Finland
		3.6. Breathing, Cooling, Cleaning, and Ventilation Rates
		3.7. Indoor Air Quality Tools
		3.8. Building Materials and Ventilation
	4. Natural Ventilation and Climate
		4.1. Atmospheric Boundary Layer
		4.2. The Science of Atmosphere and Climate
		4.3. The Laminar Boundary Layer
		4.4. Encyclopedia of Climates
		4.5. Wind as a Resource
		4.6. A Brief History of Wind Notations
		4.7. Personification of Winds
			4.7.1. Wind Names and their Characters
				4.7.1.1. Aeolus
				4.7.1.2. Anemoi
				4.7.1.3. Boreas
			4.7.2. Other Mythological Airy Characters
				4.7.2.1. Angels and Spirits
				4.7.2.2. Ariel
		4.8. Condensation and Clouds
		4.9. Impact on Buildings and Interior Spaces
		4.10. Wind Systems
		4.11. How Architects Can Influence the Impact of Wind on the Building Ventilation Path
		4.12. Information for Architects to Start the Design Process
			4.12.1. Macro-Scale Information
			4.12.2. Regional Scale Information
			4.12.3. Micro-Scale Information
			4.12.4. Final Scale: The Building Scale
		4.13. Climates for Natural Ventilation
	5. Inherited Spatial Archetypes for Natural Ventilation
		5.1. Shared Ideas as Archetypes
		5.2. The Importance of Inherited Vernacular Strategies for Sustainable Design
		5.3. Space Types: Cave, Courtyard, Chimney, Passage/Arcade/Loggia, Basket
			5.3.1. Utilizing Temperature-Induced Pressure Differentials: Caves
				5.3.1.1. The kiva of the Anasazi People
				5.3.1.2. The Corbelled Domes of the Harran Houses in Southeast Anatolia, Turkey
				5.3.1.3. The Aeolian Villas in Costozza, Veneto
			5.3.2. Simultaneously Utilizing Temperature- and Wind-Induced Pressure Differentials: Courtyard
				5.3.2.1. Courtyard as Climate Device
				5.3.2.2. The Courtyard House in China
				5.3.2.3. Two-Courtyards Ventilation Strategy
			5.3.3. Horizontal Wind Catchers: Passage, Arcade, Loggia
			5.3.4. Wind-Induced Pressure Differentials: Woven Stone Basket
			5.3.5. Wind-Induced Pressure Differentials: Wind Catcher
			5.3.6. Temperature-Induced Pressure Differentials: Chimneys
		5.4. Inherited Building Types and Climate
		5.5. Traditional Vernacular and Contemporary Modern Architecture
	6. Natural Ventilation and Thermal Comfort
		6.1. Standardizing Comfort
		6.2. Air-Conditioning
		6.3. Comfort Research
		6.4. Thermal Comfort Parameter
		6.5. Adaptive Comfort Standard for Natural Ventilated Buildings
		6.6. Thermal Delight
		6.7. Relationship of Air Velocity and Comfort
		6.8. Thermal Comfort and Metabolism
			6.8.1. Energy of Metabolic Rate
		6.9. Behavior and Comfort
		6.10. Clothing and Comfort
		6.11. Outdoor Comfort and Wind
		6.12. Operative Temperature and Comfort
		6.13. Ventilation and Humidity
		6.14. The Concept of ‘Coolness’ as a Social Rather than a Health Concern
		6.15. Thermal Limits in a Naturally Ventilated Building
		6.16. Thermal Pleasure Versus Thermal Boredom: The Concept of Alliesthesia
		6.17. Evaluating Thermal Comfort Conditions: The Thermal Comfort Calculator
Part 2 Parameters
	7. Pressure as Indicator
		7.1. Temperature-Induced Air Movement
			7.1.1. Stack Ventilation or Thermal Buoyancy Ventilation
			7.1.2. Position of Neutral Pressure Level
			7.1.3. Classification of Stack Ventilation Strategies
		7.2. Wind-Induced Ventilation
			7.2.1. Cross-Ventilation
				7.2.1.1. Basic Proportions and Strategies for Wind-Induced Cross-Ventilation
			7.2.2. Single-Sided Ventilation
		7.3. Wind Patterns in the Urban Climate Context
			7.3.1. Population in Urban Areas
			7.3.2. Urban Patterns and the Modern Movement
			7.3.3. Urban Meteorology
			7.3.4. Urban Typology
			7.3.5. Wind and the Urban Street Canyon
			7.3.6. Obstacles to Flow / Flow Around Building
				7.3.6.1. Isolated Roughness Flow
				7.3.6.2. Wake Interference in the Urban Canyon
				7.3.6.3. Skimming Flow Regime
				7.3.6.4. Flow Fields Above the City
			7.3.7. Influence of Urban Climatology on Urban Planning and Architectural Design
				7.3.7.1. Climatic Cooling Potential (CCP)
				7.3.7.2. Thermal Influence on Urban Air Flow
				7.3.7.3. Interaction of Air Flow in the Urban Boundary Layer (The City) with other Factors
				7.3.7.4. Boundary Layer Roughness Length
				7.3.7.5. Zero-plane Displacement
				7.3.7.6. Urban Pollutants
			7.3.8. Urban Geometry
			7.3.9. Urban Morphometry
			7.3.10. Airport Wind Data and Energy Modeling Tools
			7.3.11. Modeling the Urban Energy Balance
	8. Spatial Strategies / Space-Induced Air Movement
		8.1. Developing the Flow Path
			8.1.1. Path 1: Cross-Ventilation
				8.1.1.1. Casa ad Appartamenti Giuliani Frigerio, Como, by Giuseppe Terragni (1939–1940)
				8.1.1.2. Kanchanjunga Apartment Building by Charles Correa (1970–1983)
			8.1.2. Path 2: Single-Sided (Comfort) Ventilation
				8.1.2.1. Commerzbank by Sir Norman Foster
			8.1.3.  Path 3: Stack Effect Ventilation
				8.1.3.1. Judson University in Elgin, Illinois, near Chicago
			8.1.4. Path 4: Solar Chimneys
				8.1.4.1. The Charles de Gaulle School
			8.1.5. Path 5: Wind Towers – Passive and Hybrid Downdraft Cooling
				8.1.5.1. Habitat Research and Development Center (HRDC) by Nina Maritz Architects, Katatura, Windhoek, Namibia
			8.1.6. Path 6: Combined Strategies
				8.1.6.1. Freie Universität Berlin Library
		8.2. Connecting the Inner Flow Path to the Outer Condition
			8.2.1. KfW Westarkade, Frankfurt, Germany, by Sauerbruch Hutton
			8.2.2. San Francisco Federal Building by Morphosis
	9. Façade as Filter: From Windows to Curtain Walls to Adaptive and Smart Skins
		9.1. Window Ventilation in Different Regions and Climates
			9.1.1. French Doors
			9.1.2. English Sash Windows
			9.1.3. Hopper Windows
			9.1.4. Northern European Box Windows
			9.1.5. Multifunctional Roman Windows
			9.1.6. Ventilation Windows
			9.1.7. Laueferli in Davos
			9.1.8. Pivot Windows
			9.1.9. Wing Walls
			9.1.10. Ventilation Holes
		9.2. Proportional Rules for Window Openings and Distribution
		9.3. Façade Proportions and Window Ventilation Strategies
		9.4. Benefits of Double-Skin Façades in the Context of Natural Ventilation
		9.5. Innovations: Adaptive and Smart Skins for Air and Light
		9.6. Roof Ventilators, Coils, and Wind Catchers
		9.7. Roof Elements to Enhance Air Flow by the Venturi Effect
		9.8. Louvers
		9.9. Trickle Ventilation and Ventilation Skins
	10. Control of Natural Ventilation
		10.1. Senses, Sensors, and their Controls
			10.1.1. Sensing Air Movement
			10.1.2. Sensors for Air Motion
				10.1.2.1. The Tower of the Winds, Vatican
				10.1.2.2. Age of Air
			10.1.3. Actuators
			10.1.4.  Controls
				10.1.4.1. Occupants and Controls
				10.1.4.2. Predictive Controls
				10.1.4.3. Airtightness and Infiltration
				10.1.4.4. User Interaction and Overriding Controls
		10.2. Distinct Natural Ventilation Strategies
			10.2.1. Cooling the Structure: Nighttime Ventilation
				10.2.1.1. Nighttime Ventilation Case Study: The Paul Wunderlich Haus
				10.2.1.2. Materials for Thermal Mass in Nighttime Cooling
		10.3. Limitations of Natural Ventilation
			10.3.1. Climatic Limitations
			10.3.2. Acoustic Challenges
			10.3.3. Issues with Noise and Pollution
			10.3.4. Issues of Risk and Life Safety for Open-Plan Spaces and Stack Atria
			10.3.5. Screens, Louvers, and Shades
Part 3 Making Air Visible – Complex Science Summarized for Architects and Designers
	11. Overview of Methods for Calculation and Simulation
		11.1. Experiments and Wind Tunnel Research
		11.2. Empirical and Analytical Models
		11.3. Computational Models
	12. Computational Fluid Dynamics
		12.1. Numerical Modeling
		12.2. Grid Resolution and Validation
		12.3. Initial and Boundary Conditions
			12.3.1. Wind-Driven Flows
			12.3.2. Buoyancy-Driven Flows
			12.3.3. Pressure-Driven Flows
		12.4. Visualizing the Driving Dynamics of Ventilation
Author Biographies
Bibliography
Image Credits
Table Credits
Index




نظرات کاربران