ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Shigley's Mechanical Engineering Design

دانلود کتاب طراحی مهندسی مکانیک شیگلی

Shigley's Mechanical Engineering Design

مشخصات کتاب

Shigley's Mechanical Engineering Design

ویرایش: 11 
نویسندگان:   
سری:  
ISBN (شابک) : 9780073398211, 1260407640 
ناشر: McGraw-Hill Education 
سال نشر: 2019 
تعداد صفحات: 1116 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 45 مگابایت 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Shigley's Mechanical Engineering Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی مهندسی مکانیک شیگلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب طراحی مهندسی مکانیک شیگلی

طراحی مهندسی مکانیک شیگلی برای دانشجویانی که شروع به مطالعه طراحی مهندسی مکانیک می کنند در نظر گرفته شده است. دانش آموزان متوجه خواهند شد که متن ذاتاً آنها را به آشنایی با اصول تصمیمات طراحی و استانداردهای اجزای صنعتی هدایت می کند. این ترکیبی از تمرکز مستقیم بر اصولی است که مدرسان انتظار آن را داشتند، با تأکید مدرن بر طراحی و برنامه های جدید. این نسخه رویکرد خوبی طراحی شده را حفظ کرده است که این کتاب را به مدت نزدیک به 50 سال به استاندارد در طراحی ماشین تبدیل کرده است. McGraw-Hill Education's Connect نیز به عنوان یک آیتم اختیاری در دسترس است. Connect تنها سیستم یادگیری یکپارچه ای است که دانش آموزان را با تطبیق مستمر برای ارائه دقیق آنچه نیاز دارند، زمانی که به آن نیاز دارند، چگونه به آن نیاز دارند، توانمند می کند تا زمان کلاس موثرتر باشد. اتصال به استاد این امکان را می دهد که تکالیف، آزمون ها و تست ها را به راحتی تعیین کند و به طور خودکار نمره های کار دانش آموز را ثبت کند. مشکلات برای جلوگیری از اشتراک‌گذاری پاسخ‌ها تصادفی‌سازی می‌شوند و ممکن است یک «راه‌حل چند مرحله‌ای» نیز داشته باشند که به پیشرفت یادگیری دانش‌آموزان در صورت بروز مشکل کمک می‌کند.


توضیحاتی درمورد کتاب به خارجی

Shigley's Mechanical Engineering Design is intended for students beginning the study of mechanical engineering design. Students will find that the text inherently directs them into familiarity with both the basics of design decisions and the standards of industrial components. It combines the straightforward focus on fundamentals that instructors have come to expect, with a modern emphasis on design and new applications. This edition maintains the well-designed approach that has made this book the standard in machine design for nearly 50 years. McGraw-Hill Education's Connect, is also available as an optional, add on item. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need, when they need it, how they need it, so that class time is more effective. Connect allows the professor to assign homework, quizzes, and tests easily and automatically grades and records the scores of the student's work. Problems are randomized to prevent sharing of answers an may also have a "multi-step solution" which helps move the students' learning along if they experience difficulty.



فهرست مطالب

Cover
Title Page
Copyright Page
Dedication
About the Authors
Brief Contents
Contents
Preface
Acknowledgments
Part 1 Basics
	Chapter 1 Introduction to Mechanical Engineering Design
		1–1 Design
		1–2 Mechanical Engineering Design
		1–3 Phases and Interactions of the Design Process
		1–4 Design Tools and Resources
		1–5 The Design Engineer’s Professional Responsibilities
		1–6 Standards and Codes
		1–7 Economics
		1–8 Safety and Product Liability
		1–9 Stress and Strength
		1–10 Uncertainty
		1–11 Design Factor and Factor of Safety
		1–12 Reliability and Probability of Failure
		1–13 Relating Design Factor to Reliability
		1–14 Dimensions and Tolerances
		1–15 Units
		1–16 Calculations and Significant Figures
		1–17 Design Topic Interdependencies
		1–18 Power Transmission Case Study Specifications
		Problems
	Chapter 2 Materials
		2–1 Material Strength and Stiffness
		2–2 The Statistical Significance of Material Properties
		2–3 Plastic Deformation and Cold Work
		2–4 Cyclic Stress-Strain Properties
		2–5 Hardness
		2–6 Impact Properties
		2–7 Temperature Effects
		2–8 Numbering Systems
		2–9 Sand Casting
		2–10 Shell Molding
		2–11 Investment Casting
		2–12 Powder-Metallurgy Process
		2–13 Hot-Working Processes
		2–14 Cold-Working Processes
		2–15 The Heat Treatment of Steel
		2–16 Alloy Steels
		2–17 Corrosion-Resistant Steels
		2–18 Casting Materials
		2–19 Nonferrous Metals
		2–20 Plastics
		2–21 Composite Materials
		2–22 Materials Selection
		Problems
	Chapter 3 Load and Stress Analysis
		3–1 Equilibrium and Free-Body Diagrams
		3–2 Shear Force and Bending Moments in Beams
		3–3 Singularity Functions
		3–4 Stress
		3–5 Cartesian Stress Components
		3–6 Mohr’s Circle for Plane Stress
		3–7 General Three-Dimensional Stress
		3–8 Elastic Strain
		3–9 Uniformly Distributed Stresses
		3–10 Normal Stresses for Beams in Bending
		3–11 Shear Stresses for Beams in Bending
		3–12 Torsion
		3–13 Stress Concentration
		3–14 Stresses in Pressurized Cylinders
		3–15 Stresses in Rotating Rings
		3–16 Press and Shrink Fits
		3–17 Temperature Effects
		3–18 Curved Beams in Bending
		3–19 Contact Stresses
		3–20 Summary
		Problems
	Chapter 4 Deflection and Stiffness
		4–1 Spring Rates
		4–2 Tension, Compression, and Torsion
		4–3 Deflection Due to Bending
		4–4 Beam Deflection Methods
		4–5 Beam Deflections by Superposition
		4–6 Beam Deflections by Singularity Functions
		4–7 Strain Energy
		4–8 Castigliano’s Theorem
		4–9 Deflection of Curved Members
		4–10 Statically Indeterminate Problems
		4–11 Compression Members—General
		4–12 Long Columns with Central Loading
		4–13 Intermediate-Length Columns with Central Loading
		4–14 Columns with Eccentric Loading
		4–15 Struts or Short Compression Members
		4–16 Elastic Stability
		4–17 Shock and Impact
		Problems
Part 2 Failure Prevention
	Chapter 5 Failures Resulting from Static Loading
		5–1 Static Strength
		5–2 Stress Concentration
		5–3 Failure Theories
		5–4 Maximum-Shear-Stress Theory for Ductile Materials
		5–5 Distortion-Energy Theory for Ductile Materials
		5–6 Coulomb-Mohr Theory for Ductile Materials
		5–7 Failure of Ductile Materials Summary
		5–8 Maximum-Normal-Stress Theory for Brittle Materials
		5–9 Modifications of the Mohr Theory for Brittle Materials
		5–10 Failure of Brittle Materials Summary
		5–11 Selection of Failure Criteria
		5–12 Introduction to Fracture Mechanics
		5–13 Important Design Equations
		Problems
	Chapter 6 Fatigue Failure Resulting from Variable Loading
		6–1 Introduction to Fatigue
		6–2 Chapter Overview
		6–3 Crack Nucleation and Propagation
		6–4 Fatigue-Life Methods
		6–5 The Linear-Elastic Fracture Mechanics Method
		6–6 The Strain-Life Method
		6–7 The Stress-Life Method and the S-N Diagram
		6–8 The Idealized S-N Diagram for Steels
		6–9 Endurance Limit Modifying Factors
		6–10 Stress Concentration and Notch Sensitivity
		6–11 Characterizing Fluctuating Stresses
		6–12 The Fluctuating-Stress Diagram
		6–13 Fatigue Failure Criteria
		6–14 Constant-Life Curves
		6–15 Fatigue Failure Criterion for Brittle Materials
		6–16 Combinations of Loading Modes
		6–17 Cumulative Fatigue Damage
		6–18 Surface Fatigue Strength
		6–19 Road Maps and Important Design Equations for the Stress-Life Method
		Problems
Part 3 Design of Mechanical Elements
	Chapter 7 Shafts and Shaft Components
		7–1 Introduction
		7–2 Shaft Materials
		7–3 Shaft Layout
		7–4 Shaft Design for Stress
		7–5 Deflection Considerations
		7–6 Critical Speeds for Shafts
		7–7 Miscellaneous Shaft Components
		7–8 Limits and Fits
		Problems
	Chapter 8 Screws, Fasteners, and the Design of Nonpermanent Joints
		8–1 Thread Standards and Definitions
		8–2 The Mechanics of Power Screws
		8–3 Threaded Fasteners
		8–4 Joints—Fastener Stiffness
		8–5 Joints—Member Stiffness
		8–6 Bolt Strength
		8–7 Tension Joints—The External Load
		8–8 Relating Bolt Torque to Bolt Tension
		8–9 Statically Loaded Tension Joint with Preload
		8–10 Gasketed Joints
		8–11 Fatigue Loading of Tension Joints
		8–12 Bolted and Riveted Joints Loaded in Shear
		Problems
	Chapter 9 Welding, Bonding, and the Design of Permanent Joints
		9–1 Welding Symbols
		9–2 Butt and Fillet Welds
		9–3 Stresses in Welded Joints in Torsion
		9–4 Stresses in Welded Joints in Bending
		9–5 The Strength of Welded Joints
		9–6 Static Loading
		9–7 Fatigue Loading
		9–8 Resistance Welding
		9–9 Adhesive Bonding
		Problems
	Chapter 10 Mechanical Springs
		10–1 Stresses in Helical Springs
		10–2 The Curvature Effect
		10–3 Deflection of Helical Springs
		10–4 Compression Springs
		10–5 Stability
		10–6 Spring Materials
		10–7 Helical Compression Spring Design for Static Service
		10–8 Critical Frequency of Helical Springs
		10–9 Fatigue Loading of Helical Compression Springs
		10–10 Helical Compression Spring Design for Fatigue Loading
		10–11 Extension Springs
		10–12 Helical Coil Torsion Springs
		10–13 Belleville Springs
		10–14 Miscellaneous Springs
		10–15 Summary
		Problems
	Chapter 11 Rolling-Contact Bearings
		11–1 Bearing Types
		11–2 Bearing Life
		11–3 Bearing Load Life at Rated Reliability
		11–4 Reliability versus Life—The Weibull Distribution
		11–5 Relating Load, Life, and Reliability
		11–6 Combined Radial and Thrust Loading
		11–7 Variable Loading
		11–8 Selection of Ball and Cylindrical Roller Bearings
		11–9 Selection of Tapered Roller Bearings
		11–10 Design Assessment for Selected Rolling-Contact Bearings
		11–11 Lubrication
		11–12 Mounting and Enclosure
		Problems
	Chapter 12 Lubrication and Journal Bearings
		12–1 Types of Lubrication
		12–2 Viscosity
		12–3 Petroff’s Equation
		12–4 Stable Lubrication
		12–5 Thick-Film Lubrication
		12–6 Hydrodynamic Theory
		12–7 Design Variables
		12–8 The Relations of the Variables
		12–9 Steady-State Conditions in Self-Contained Bearings
		12–10 Clearance
		12–11 Pressure-Fed Bearings
		12–12 Loads and Materials
		12–13 Bearing Types
		12–14 Dynamically Loaded Journal Bearings
		12–15 Boundary-Lubricated Bearings
		Problems
	Chapter 13 Gears—General
		13–1 Types of Gears
		13–2 Nomenclature
		13–3 Conjugate Action
		13–4 Involute Properties
		13–5 Fundamentals
		13–6 Contact Ratio
		13–7 Interference
		13–8 The Forming of Gear Teeth
		13–9 Straight Bevel Gears
		13–10 Parallel Helical Gears
		13–11 Worm Gears
		13–12 Tooth Systems
		13–13 Gear Trains
		13–14 Force Analysis—Spur Gearing
		13–15 Force Analysis—Bevel Gearing
		13–16 Force Analysis—Helical Gearing
		13–17 Force Analysis—Worm Gearing
		Problems
	Chapter 14 Spur and Helical Gears
		14–1 The Lewis Bending Equation
		14–2 Surface Durability
		14–3 AGMA Stress Equations
		14–4 AGMA Strength Equations
		14–5 Geometry Factors I and J (ZI and YJ)
		14–6 The Elastic Coefficient Cp (ZE)
		14–7 Dynamic Factor Kv
		14–8 Overload Factor Ko
		14–9 Surface Condition Factor Cf (ZR)
		14–10 Size Factor Ks
		14–11 Load-Distribution Factor Km (KH)
		14–12 Hardness-Ratio Factor CH (ZW)
		14–13 Stress-Cycle Factors YN and ZN
		14–14 Reliability Factor KR (YZ)
		14–15 Temperature Factor KT (Yθ)
		14–16 Rim-Thickness Factor KB
		14–17 Safety Factors SF and SH
		14–18 Analysis
		14–19 Design of a Gear Mesh
		Problems
	Chapter 15 Bevel and Worm Gears
		15–1 Bevel Gearing—General
		15–2 Bevel-Gear Stresses and Strengths
		15–3 AGMA Equation Factors
		15–4 Straight-Bevel Gear Analysis
		15–5 Design of a Straight-Bevel Gear Mesh
		15–6 Worm Gearing—AGMA Equation
		15–7 Worm-Gear Analysis
		15–8 Designing a Worm-Gear Mesh
		15–9 Buckingham Wear Load
		Problems
	Chapter 16 Clutches, Brakes, Couplings, and Flywheels
		16–1 Static Analysis of Clutches and Brakes
		16–2 Internal Expanding Rim Clutches and Brakes
		16–3 External Contracting Rim Clutches and Brakes
		16–4 Band-Type Clutches and Brakes
		16–5 Frictional-Contact Axial Clutches
		16–6 Disk Brakes
		16–7 Cone Clutches and Brakes
		16–8 Energy Considerations
		16–9 Temperature Rise
		16–10 Friction Materials
		16–11 Miscellaneous Clutches and Couplings
		16–12 Flywheels
		Problems
	Chapter 17 Flexible Mechanical Elements
		17–1 Belts
		17–2 Flat- and Round-Belt Drives
		17–3 V Belts
		17–4 Timing Belts
		17–5 Roller Chain
		17–6 Wire Rope
		17–7 Flexible Shafts
		Problems
	Chapter 18 Power Transmission Case Study
		18–1 Design Sequence for Power Transmission
		18–2 Power and Torque Requirements
		18–3 Gear Specification
		18–4 Shaft Layout
		18–5 Force Analysis
		18–6 Shaft Material Selection
		18–7 Shaft Design for Stress
		18–8 Shaft Design for Deflection
		18–9 Bearing Selection
		18–10 Key and Retaining Ring Selection
		18–11 Final Analysis
		Problems
Part 4 Special Topics
	Chapter 19 Finite-Element Analysis
		19–1 The Finite-Element Method
		19–2 Element Geometries
		19–3 The Finite-Element Solution Process
		19–4 Mesh Generation
		19–5 Load Application
		19–6 Boundary Conditions
		19–7 Modeling Techniques
		19–8 Thermal Stresses
		19–9 Critical Buckling Load
		19–10 Vibration Analysis
		19–11 Summary
		Problems
	Chapter 20 Geometric Dimensioning and Tolerancing
		20–1 Dimensioning and Tolerancing Systems
		20–2 Definition of Geometric Dimensioning and Tolerancing
		20–3 Datums
		20–4 Controlling Geometric Tolerances
		20–5 Geometric Characteristic Definitions
		20–6 Material Condition Modifiers
		20–7 Practical Implementation
		20–8 GD&T in CAD Models
		20–9 Glossary of GD&T Terms
		Problems
Appendixes
	A Useful Tables
	B Answers to Selected Problems
Index




نظرات کاربران